10th Mathematics AP SA1 Question paper 202-26 | 10TH Class Maths Ap sa1 exam paper 2025 answer key real

Table of Contents

SELF ASSESSMENT – TERM 1 MODEL PAPER – 2025-2026

Exam Code: 955    MR – 22
UDISE Code: _____________   PEN ID: _____________
Child Name: _________________________________________
Roll No.: ___________    Class: 10   Subject: Mathematics
Total Marks: 100    Time: 3 Hours
No. of Questions: 33


విభాగం – A / SECTION – A

(Each question carries 1 mark / ప్రతీ ప్రశ్నకు 1 మార్కు)
20 × 1 = 20 Marks

  1. The HCF of 65 and 117 is _____
     A) 1 B) 13 C) 5 D) 7  (65 మరియు 117 యొక్క గ.సా.ని ఏది?) [ ]
  2. The decimal expansion of 1/8 is _____
     A) Terminating B) Non-terminating C) Irrational D) Repeating [ ]
  3. If α and β are the zeros of x² – 5x + 6, then αβ = _____ [ ]
     A) –5 B) 6 C) 11 D) 2
  4. Graph of a pair of inconsistent linear equations represents _____
     A) Parallel lines B) Coincident lines C) Intersecting lines D) Perpendicular lines [ ]
  5. The roots of x² + 5x + 6 = 0 are _____
     A) –2, –3 B) 2, 3 C) 3, –2 D) –3, 2 [ ]
  6. The common difference of A.P. 2, 7, 12, 17,… is _____ [ ]
     A) 2 B) 5 C) 7 D) 3
  7. In ΔABC, if AD ⊥ BC, then AD is called _____
     A) Median B) Altitude C) Bisector D) Radius [ ]
  8. If ΔABC ~ ΔDEF, then AB/DE = _____
     A) AC/EF B) BC/DE C) AD/EF D) AB/DF [ ]
  9. Distance between (3, –4) and (0, 0) = _____ [ ]
     A) 5 B) 4 C) 3 D) √10
  10. The midpoint of (2, 3) and (4, 7) is _____ [ ]
     A) (3, 5) B) (2, 4) C) (4, 6) D) (1, 5)
  11. Mode = _____ (3 × Median – 2 × Mean) [ ]
     A) Empirical relation B) Pythagoras theorem C) Euclid axiom D) Area formula
  12. tan 45° = _____ [ ]
     A) 0 B) 1 C) √3 D) 1/√3
  13. sin²A + cos²A = _____ [ ]
     A) 0 B) 1 C) 2 D) 3
  14. The ratio of sides in a 30°–60°–90° triangle is _____ [ ]
     A) 1 : √3 : 2 B) 1 : 1 : √2 C) 2 : 1 : √3 D) √2 : 1 : 1
  15. The sum of n terms of an A.P. is given by _____
     A) n/2 [2a + (n – 1)d] B) a + nd C) a + d/2 D) n a [ ]
  16. In ΔABC, if AD is the median, then AB² + AC² = 2(AD² + _____²) [ ]
     A) BD B) DC C) BC/2 D) None
  17. If a/b = c/d, then ad = _____ [ ]
     A) bc B) ac C) bd D) cd
  18. Sum of zeros of x² – 7x + 12 is _____ [ ]
     A) 7 B) 12 C) –7 D) –12
  19. tan θ = sin θ / _____ [ ]
     A) cos θ B) tan θ C) cot θ D) sec θ
  20. The formula for mode in continuous data is _____
     A) l + (h × f₁ – f₀)/(2f₁ – f₀ – f₂) B) (l +h)/2 C) 3 Median – 2 Mean D) None [ ]

విభాగం – B / SECTION – B

(Each question carries 2 marks / ప్రతీ ప్రశ్నకు 2 మార్కులు)
6 × 2 = 12 Marks

  1. Find the HCF of 26 and 91 using Euclid’s algorithm.
    (యూక్లిడ్ విధానాన్ని ఉపయోగించి 26 మరియు 91 యొక్క గ.సా.ని కనుగొనండి.)
  2. If a polynomial p(x) = x² – 4x + 3, find its zeros.
    (p(x) = x² – 4x + 3 యొక్క శూన్యాలను కనుగొనండి.)
  3. Solve 2x + 3y = 12, x – y = 1 by substitution method.
    (ప్రతిస్థాపన పద్ధతితో సమీకరణాలను పరిష్కరించండి.)
  4. Find the value of k if x = 2 is a root of 2x² + kx + 3 = 0.
    (x = 2 సమీకరణానికి మూలమైతే k విలువ కనుగొనండి.)
  5. Find the 10th term of the A.P. 5, 9, 13, 17,…
    (5, 9, 13, 17,… A.P. లో 10వ పదం కనుగొనండి.)
  6. Find the coordinates of the midpoint joining (4, –3) and (–2, 5).

విభాగం – C / SECTION – C

(Each question carries 4 marks / ప్రతీ ప్రశ్నకు 4 మార్కులు)
7 × 4 = 28 Marks

  1. Divide the polynomial p(x) = 2x³ + 3x² – 2x – 3 by (x + 1).
  2. Using Pythagoras theorem, prove that the triangle formed on the diameter of a circle is right angled.
  3. Find the sum of the first 20 terms of A.P. whose first term = 7 and common difference = 3.
  4. Find the coordinates of the centroid of the triangle with vertices (2, 3), (4, –1), (6, 5).
  5. Draw the graph of 2x + 3y = 6 and x – y = 1 on the same graph.
  6. A boy observes the top of a tower at an angle of elevation 30°. If the boy is 50 m away from the foot of the tower, find its height.
  7. The following table shows the daily wages of workers. Find the mean by direct method.

| Wages (Rs.) | 100-120 | 120-140 | 140-160 | 160-180 | 180-200 |
|————–|———-|———-|———-|———-|
| No. of Workers | 4 | 6 | 10 | 8 | 2 |


విభాగం – D / SECTION – D

(Each question carries 8 marks / ప్రతీ ప్రశ్నకు 8 మార్కులు)
5 × 8 = 40 Marks

  1. Solve the quadratic equation x² – 7x + 10 = 0 by factorization method.
  2. Prove that √2 is irrational.
  3. Prove that the areas of two similar triangles are in the ratio of the squares of their corresponding sides.
  4. From the top of a building 30 m high, the angle of depression of a car on the road is 30°. Find the distance of the car from the foot of the building.
  5. The following table gives the distribution of heights of students in a class. Draw an ogive to find the median height.

| Height (cm) | 140-150 | 150-160 | 160-170 | 170-180 | 180-190 |
|————–|———-|———-|———-|———-|
| No. of Students | 5 | 8 | 10 | 6 | 1 |


ANSWER KEY

  1. B 2) A 3) B 4) A 5) A 6) B 7) B 8) A 9) A 10) A
  2. A 12) B 13) B 14) A 15) A 16) C 17) A 18) A 19) A 20) A
  3. 13 22) 1, 3 23) x = 3, y = 2 24) k = –7 25) 41 26) (1, 1)
  4. Quotient = 2x² + x – 3; Remainder = 0
  5. ∵ Angle in a semicircle = 90°, proved.
  6. Sₙ = n/2 [2a + (n – 1)d] = 20/2 [14 + 57] = 710
  7. Centroid = (4, 7/3)
  8. Lines intersect at (1.8, 0.8)
  9. tan 30° = h/50 ⇒ h = 50/√3 = 28.9 m
  10. Mean = Σ(fx)/Σf = (4×110 + 6×130 + 10×150 + 8×170 + 2×190)/30 = 150 Rs.
  11. (x – 2)(x – 5) = 0 ⇒ x = 2, 5
  12. Assume √2 = p/q → contradiction → irrational.
  13. If ΔABC ~ ΔDEF, then (AB/DE)² = ar(ΔABC)/ar(ΔDEF). Hence proved.
  14. tan 30° = 30/x ⇒ x = 30√3 = 51.96 m
  15. Median class = 160-170 → Median ≈ 163 cm.